
Cost Model and Adaptive Scheme for
Publish/Subscribe Systems on Mobile Environments

Sangyoon Oh1,2, Sangmi Lee Pallickara2, Sunghoon Ko1,
 Jai-Hoon Kim1,3, Geoffrey Fox1,2

1 Community Grids Lab., Indiana University, Bloomington, IN. U.S.A.
{ohsangy,suko,jaikim,gcf}@indiana.edu

2 Department of Computer Science, Indiana University, Bloomington, IN. U.S.A.
leesangm@cs.indiana.edu

3 Graduate School of Information and Comminucations, Ajou University, Suwon, S. Korea
jaikim@ajou.ac.kr

Abstract. One of main advantages of publish/subscribe systems is decoupling
of publishers and subscribers in time, space, and synchronization. Thus pub-
lish/subscribe model is appropriate in many push based data dissemination ap-
plications such as data dissemination services, information sharing, service dis-
covery, etc. However, to our best knowledge, research of performance model-
ing and adaptive schemes for publish/subscribe has not been announced yet.
This paper presents cost model for publish/subscribe systems, analyze its per-
formance, and compare to other interaction-based models such as client-server
model and polling models. Based on the cost analysis, we propose adaptive
model which can dynamically select an appropriate model for each client inde-
pendently.

1 Introduction

Publish/subscribe system have been widely used in many applications [8, 9, 10, 11].
Publish/subscribe system consists of publisher (ES: Event Source), server (EBS:
Event Brokering System), and subscriber (ED: Event Displayer). After publisher
publishes data (events) asynchronously to a server, the server disseminates the data
(events) to subscribers which registered its interest on the server. Thus
publish/subscribe model is appropriate in many applications such as as data
dissemination services [12], information sharing [13], service discovery [14], etc. As
these kinds of services are popular in mobile and ubiquitous environments,
publish/subscriber model will be more widely used. Figure 1 depicts system
configurations of publish/subscribe

Many researches have been per
functions, and improve performan
[15], Gryphon [16], JEDI [17], Reb
edge, research of performance mod
has not been announced yet. In
ED

HHMS
Proxy

ES

W
ire

d
Wired

ES (Event Source): Publisher
ED (Event Displayer): Subscriber
EBS (Event Brokering System): Server

I
Cl
nternet

oud

ES

ES

EBS
ES/
ED

Ra

 systems for mobile environments.

ES/
ED

dio
tower

Ce
llu

lar

W
irelessLAN

formed so far to propose architecture, add useful
ce of publish/subscribe systems, including Siena
eca [18], Elvin [19]. However, to our best knowl-
eling and adaptive schemes for publish/subscribe
 this paper, we present cost model for pub-

Figure 1. Pub/Sub System Configurations

lish/subscribe systems, analyze its performance, and compare to other interaction
based models such as client-server model and polling models. We can estimate per-
formance and effectively adopt publish/subscribe systems by using our proposed cost
model and analysis of publish/subscribe systems. Based on the cost analysis, we pro-
pose adaptive model which can dynamically select an apropriate model (ex. pub-
lish/subscribe, request/reply, polling models) for each client independently. We be-
lieve the adaptive scheme we introduce here is very useful for the mobile and ubiqui-
tous services where characteristics of device and networks are diverse and dynami-
cally change. In mobile and ubiquitous services, many types of mobile devices are
used and its performance, system resources, executing application, and user’s use pat-
tern are all different. Thus, independent model selection for each mobile device, ser-
vice, and user is very useful for mobile and ubiquitous environments.

As a summary, cost analysis model and adaptive scheme can be used as follows:
 static model selection: We can choose one of appropriate models for all devices
depending on system and application parameters.
 hybrid model selection: Each device can adopt an appropriate model
independently, which is very useful for mobile and ubiquitous environments
where mobile devices and users’ preference are diverse and numerous.
 dynamic model selection: Model can be changed during a service according to
change of status of system and network, which is common in mobile and ubiquitous
services.

Our analysis shows that publish/subscribe model are appropriate in many cases and
adaptive scheme are essential especially in mobile and ubiquitous environments
where mobile devices and users’ preference are diverse and numerous and status of
system and network are dynamic. We can easily give many examples that
publish/subscriber model and adaptive scheme have advantages as follows:

 Broadcast notification services in many areas such as real-time sports news, stock
market, etc. (publish/subscribe model)

 Many applications such as location based services are available using many types
of devices and communication protocols (adaptive scheme: hybrid model selection).

 Users can alternatively choose on/off-line or power on/off to save communication
cost or batter power, or during their movement (publish/subscribe model, adaptive
scheme: dynamic model selection).

 Users can alternatively use wired or wireless connection (Ethernet or CDMA)
during services (adaptive scheme: dynamic model selection)

 Programmer can choose model according to data access patterns and system
parameters for designing application (adaptive scheme: static model selection)

 System manager can choose model according to service characteristics (adaptive
scheme: static model selection)

 Users can choose model according to their preference (adaptive scheme: hybrid
model selection)

 System can automatically choose model for each user according to his/her
preference or use pattern (adaptive scheme: hybrid model selection)

We also experimentally measured and compared performance of publish/subscribe
model to client/server model on our test bed including mobile device and

NaradaBrokering [4] (our publish/subscribe based message brokering system) to
verify correctness of our performance model on the real systems. Our cost analysis
model is simple but accordant with experimental results

2 Cost Model

In this section, we present the system models and examine the analytic cost model of
three different models; publish/subscribe, request/reply, and periodic polling models.

2.1 System Models

To evaluate the cost model for different systems, we assume following basic system
parameters to analyze cost.

 α : publish rate in publish/subscribe model
 β : event access rate in publish/subscribe model or data request rate in client-

server model
 cps : publish/subscribe cost per event, cpub (cost for publish event) + csub(cost for

subscribe event)
 crr: cost per request and reply in request/reply (client-server) model.
 cpoll(α,T) : cost of periodic publish or polling, where T is length of period.
 cd(α,T) : cost of delaying publish in polling model
 s(n) : effect of sharing among n subscribers, e.g., server can deliver events with

low cost when it broadcasts event to many subscribers.
 tps : time delay for publish/subscribe, tpub)(ime delay for publish) + tsub(time

delay for subscribe)
 trr : time delay for request and reply
 tpoll(α, T): time delay for periodic publish.

2.2 Cost Analysis

In this analysis, we analyze cost of three different models without any failure of
communication link or node. We consider (1) conceptual total cost (e.g., the number
of message, amount of message, or time delay) per unit time for each model, (2) cost
for each access by client (or subscriber), (3) time delay for access after subscriber’s
(or client’s) intention, and (4) time delay between event occurrence and notification
to subscriber (or recognition by client). Cost can be the number of message, amount
of message, or time delay. Table 1 shows the summary of the cost for each model
analyzed in this paper.

Table 1. The cost of the selected model
Model Publish/Subscribe Request/Reply Polling

conceptual total cost
per time unit α (cpub + n s(n)csub) β n crr. (cpoll(α,T) + cdelay(α,T)) / T

cost for each access

β
α (

n
c pub + csub) crr cpoll(α,T) + cdelay(α,T)

time delay between in-
tention and access 0 trr T/2

time delay between
 event occurrence and
notifica-
tion/recognition
(or access)

tps = tpub + tsub

(tps = tpub + tsub+
β
1) β2

1
 T/2

Cost of publish/subscribe model
Since we assume that cpub is cost for that ES(Even Source) publish events to
EBS(Event Brokering System), and csub is cost for that ED(Event Displayer)
subscribes events from EBS(Event Brokering System), cost of publish/subscribe
model for each event publish and subscribe is cpub + n s(n)csub . Please remember that
n is the average number of subscriber and s(n) is sharing effect among n nodes. When
publish rate is α, cost per time unit is α (cpub + n s(n)csub). Now, we consider cost in
the view point of subscriber (per each event access of subscriber). We analyze three
performance metrics, (1) conceptual cost for each access, (2) time delay for
subscriber to access event after its intention, (3) and time delay until notification to
subscriber after event occurring. The average number of event occurred before each

access is cost for each access:
β
α

βα
α

βα
β

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++∑

∞

=

i

i 0

, where cpub is shared among n

subscriber and csub is required for each subscriber. Thus, average cost for each access
is)(sub

pub c
n

c
+

β
α . There is no time delay for access after subscriber’s intention since

event has already been received. Time delay between event occurrence and
notification to subscriber is tps = tpub + tsub.

Cost of request/reply model
Cost for each request and reply is assumed to crr. Thus total cost is ncrr, where n is the
number of client. When request rate is β, cost per time unit is: β n crr. Time delay for
access after client’s intention is trr as we assume. Time delay between event
occurrence and recognition of subscriber is depends on request rate (similar to polling
rate):

β2
1

Periodic (polling) model
 Periodic model is appropriate for applications in which delayed message is
acceptable. Cost of periodic model (periodic publish or polling) per period is cpoll(α,
T) + cdelay(α, T). Thus, cost per time unit is (cpoll(α, T) + cdelay(α, T)) /T , where
cpoll(α, T) can be between crr and αTcrr. If we assume periodic publish, cost per time
unit is (cpub (α, T) + n s(n) csub(α, T) + cdelay(α, T))/T, where cpub(α,T) is between
cpub and αTcpub, cpub(α,T) and csub(α,T) is be between csub and αTcsub,, and cdelay(α,T) is
proportional to between cdelay and αTcdelay. Average time delay for access after client’s
intention is T/2. Time delay between event occurrence and recognition of subscriber
is T/2.

3. Adaptive Scheme

In this section, we describe adaptive scheme that can choose an appropriate model
among publish/subscribe and request/reply models. Each client node can select its
own model independently (hybrid model) and change its model during its service
(dynamic model). Our adaptive scheme based cost analysis presented in section 2.

In this paper, we consider cost for each client’s access as a cost metric. During a
period of time, the average number of events occurred per client’s access is measured
for each client. At the end of the period, the average cost for each client’s access is
computed using the analysis in section 2, which is)(sub

pub c
n

c
+

β
α , where

β
α is average

number of event occurred per client’s access and n is the number of subscriber. In our
adaptive scheme, average number of event and the number of subscriber are obtained
experimentally during the execution of application. At the end of the period, the
model that is expected to require less cost than the other model during the following
period is selected independently for each client. We can summarize our adaptive
model as follows:

(1) During the period of time, average number of event occurred per client’s access
is measured for each client.

(2) If
rrsub

pub cc
n

c
>+)(

β
α , choose request/reply model for the next period.

(3) else, choose publish/subscribe model.
(4) Repeat step1 and step3
Measuring the number of events per client’s access is important our design issues.

We can measure the number as follows for each model chosen by adaptive scheme:
 Request/reply model: Whenever a server receives client’s request, counter of

associated client is increased. Then, average number of client’s request per event
is computed for each client at the end of period and an appropriate model for the
client is selected. Server informs client of the selected model.

 Publish/subscribe model: A publisher includes event Id. and the number of
subscribers on sending event message. When a subscriber accesses event, it
compares current event Id. to the event Id. previously accessed. A subscriber
computes an average number of events per access at the end of period and
chooses an appropriate model for the subscriber. The subscriber informs
publisher of the selected model.
Fig.2 shows that publish/subscribe model is appropriate when the number of client

is large and/or the number of event per client’s access is small. When we assume that
cost of each access (crr) is equal to 2 in the request/reply model, our adaptive scheme
will select publish/subscribe model when its cost per client’s access is less than or
equal to 2.

1 3 5 7 9 S1

S3
S5

0
1
2
3

4
5

6

Cost per
client' s
access

No. of client

No. of event
per client' s

access

5- 6
4- 5
3- 4
2- 3
1- 2
0- 1

Fig. 2. Cost per client’s access of pub-
lish/subscribe model

(cpub=1 and csub=1)

Cost Comparisons

0
2
4
6
8

10
12
14
16
18

1 3 5 7 9 11 13 15
n (number of nodes)

C
os

t

req/ reply
peoriodic 2
pub/ sub
periodic1

Fig. 3. Communication cost per transac-

tion by varying number of clients
(α = 0.5, s(n)=1, cps = 2, and crr = 2;

cpub(α,T)= cpub, csub(α,T)= csub, and cde-
lay(α,T)= 0 for periodic1; cpub(α,T)= αTcpub,
csub(α,T)= αTcsub, cdelay(α,T)= 2αTcdealy for

periodic2)

4. Performance Comparisons

 In this section, we compare cost between pub-
lish/subscribe and request/reply models. Also, we meas-
ure performance on our test-bed as shown in Fig.1 to ver-
ify correctness of our analysis models.

 4.1 Parametric Analysis

In this section, we describe performance comparisons by
parametric analysis. We set system parameters as shown
in Table 2. Fig.3 shows performance comparisons be-
tween publish/subscribe, request/reply, and polling sys-
tems. In this experiment, cost is communication cost for
each transaction. Since publish/subscriber system dis-
seminates data via server instead of individually for each
client, it requires less cost than request/reply system. As
the number of client node increases, the cost gap between two systems increases. Pe-
riodic polling system saves cost by transferring data once per period when delay cost
is negligible. However, cost increases as delay cost increase. Polling system is viable
approach for applications where data delay is allowed and delay cost is negligible.

Table2. Parameters
Param. Values

α, β 0.5
cps 2
cpub, csub 11
crr: 2
cpoll(α, T) 1 or αT
cdelay(α, T) 0, T, or αT
s(n) 1/n - 1
tps 1
tproc 1 or 5
trr 1
tpoll(α, T) 1, T, or αT

4.2 Experimental Results

Our experiment attempts to get publish/subscribe cost per event for both a spectrum
of message sizes and a number of mobile clients in a practical environment. The cost
of request/reply event is also experimented for comparisons. The experiment
environment consists of NaradaBrokering [4] system where a HHMS (HandHeld
Message Service) [5] Proxy plugged in, mobile clients, and conventional PC

applications. Mobile applications are written in J2ME MIPD 2.0 [20] with the socket
connection supporting. NaradaBrokering is used as a primary publish/subscribe
system for a conventional wired distributed system. NaradaBrokering is being
developing in Community Grid Laboratory at Indiana University. It is originally
designed for a uniform software multicast to support a real-time collaboration linked
by publish/subscribe.

101 102 103 1040.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

Payload (byte)

D
at

a
Tr

an
si

tio
n

Ti
m

e
(s

ec
)

pub/sub
RPC

0 5 10 15 20 25 30 35

0

50

100

150

200

250

300

350

400

Number Of Clients

D
at

a
Tr

an
si

tio
n

Ti
m

e
(m

se
c)

pub/sub
RPC

Fig. 4. Delay time by Payload

(Treo 600 Smartphone)
Fig. 5. Delay Time by Number of Clients

(J2ME Wireless Toolkit Emulator)

We made two different measures. One for measuring a practical ‘cost per
message’ of publish/subscribe system and RPC system. The other is measuring ‘cost
of given number of clients’ in wired environment with phone emulator that comes
with J2ME Wireless Toolkit. This is a limited configuration, but it is still enough to
exemplify the analysis we’ve made in Section 2. For the message cost experiments,
we measured a round trip time (RTT) with a spectrum of message size. A client
application (Event Displayer; ED) on Treo 600 mobile device which is connected to
Internet through Sprint PCS Vision service just echoes message from the message
publisher (Event Source; ES) which runs on wired Linux machine. Thou, we use a
mobile device for the experiment. The RPC comparison experiment is set up with
direct socket connections between clients and RPC server. The result is shown in
Fig.4. The next experiment is done to get a message publishing cost of given number
of clients. Client applications run on phone emulators on one desktop and two
Laptops. Laptops equipped with Pentium4 processor and minimum 384 MB memory.
For the connection, one has wired connection and the other has 802.11b wireless
connection. A publisher application publishes a message and when it gets all ACKs, it
gets the time stamp. Fig.5 shows the result, which is about accordance with analysis
shown in Fig.3. We define the data transition time of publish/subscribe and RPC as
RTT / 2 and RTT respectively from the semantics of each messaging scheme.

5. Conclusion

We present cost analysis model for publish/subscribe systems. Based on the cost
analysis, we propose adaptive scheme which can dynamically select an appropriate
model for each client independently. We can estimate performance and effectively
adopt publish/subscribe systems by using our proposed cost model of publish/subscribe

systems and adaptive model. Experimental results (delay time by number of clients)
from our test bed are quite similar to our cost analysis models, which verify that our
cost analysis model is useful to select proper model and to design adaptive schemes.

References
1. L. Fiege, F. Gartner, O. Kasten, and A. Zeidler, “Supporting Mobility in Content-Based

Publish/Subscribe Middleware,” Middleware 2003, LNCS 2672, pp. 103 – 122, 2003.
2. M. Caporuscio, A. Carzaniga, and A. Wolf, “Design and Evaluation of a Support Service for

Mobile, Wireless Publish/Subscribe Applications,” IEEE Transactions on Software Engineering,
vol. 29, no. 12, pp. 1059 – 1071, Dec. 2003.

3. U. Farooq, E. Parsons, and S. Majumdar, “Performance of Publish/Subscrive Middleware in
Mobile wireless Networks,” Proc. of WOSP’04, pp. 278-289, Jan. 2004.

4. Shrideep Pallickara and Geoffrey Fox, “NaradaBrokering: A Middleware Framework and
Architecture for Enabling Durable Peer-to-Peer Grids,” Proceedings of ACM/IFIP/USENIX
International Middleware Conference Middleware, pp 41-61, 2003.

5. Sangyoon Oh, Geoffrey C. Fox, Sunghoon Ko GMSME: An Architecture for Heterogeneous
Collaboration with Mobile Devices The Fifth IEEE International Conference on Mobile and
Wireless Communications Networks (MWCN 2003) Singapore in Sep. / Oct., 2003.

6. Sangmi Lee, Sunghoon Ko, Geoffrey Fox, Kangseok Kim, Sangyoon Oh A Web Service Ap-
proach to Universal Accessibility in Collaboration Services in Proceedings of the 1st Interna-
tional Conference on Web Services ICWS Las Vegas June 2003.

7. P. Eugster, P. Felber, R. Guerraoui, and A. Kermarrec, “The Many Faces of Publish/Subscribe,”
ACM Computing Surveys, vol. 35, no. 2, Jun. 2003, pp. 114-131.

 8. A. Rowstron, A.-M. Kermarrec, M. Castro, and P. Druschel, "SCRIBE: The design of a large-
scale event notification infrastructure," in Networked Group Communication, 2001, pp. 30--43.
http://citeseer.ist.psu.edu/rowstron01scribe.html

9. Sonic Software Corporation, “Sonic Customer Success: Vodafone”, 2004,
http://www.sonicsoftware.com/customers/docs/vodafone.pdf

10. Softwired Inc. “Capturing the excitement and intense bidding action of the real Auction house:
eBay,” http://www.softwired-inc.com/products/success.html

11. Ahmet Uyar, Shrideep Pallickara and Geoffrey Fox, “Audio Video Conferencing in Distributed
Brokering Systems,” in Proc. International Conf. on Communications in Computing, June 2003

12. G. Muhl, A. Ulbrich, K. Herrmann, and T. Weis, “Disseminating Information to Mobile Clients
Using Publish-Subscribe,” Proc. of the IEEE Internet Computing, Vol.8, No. 3, May/June 2004

13. Sagar Chaki, Pascal Fenkam, Harald Gall, Somesh Jha, Engin Kirda, and Helmut Veith, “Inte-
grating Publish/Subscribe into a Mobile Teamwork Support Platform,” Proc. of the 15th Interna-
tional Conference on Software Engineering and Knowledge Engineering 2003

14. Zhexuan Song, Yannis Labrou and Ryusuke Masuoka, “Dynamic Service Discovery and Man-
agement in Task Computing,” Proceedings of the 1st International Conference on Mobile and
Ubiquitous Systems: Networking and Services (Mobiquitous 2004), August 22-25, 2004.

15. A. Carzaniga, D.Rosenblum, and A. Wolf, “Design and evaluation of a wide-area event notifica-
tion service,” in ACM Transactions on Computer Systems, 2001

16. M. Aguilera, R. Strom, D. Sturman, M.Astley, and T. Chandra, “Matching events in a content-
based subscription system,” Proc. of ACM Symp. on Principles of Distributed Computing, 1999

17. G. Cugola, E. Di Nitto, A. Fuggeta, “ The JEDI Event-based infrastructure and its Application to
the Development of the OPSS WFMS,” IEEE Trans. of Software Engineering, 2001

18. L. Fiegen, G. Muhl, and F. Gartner, “A Modular Approach to Building Event-Based Systems,”
ACM Symposium on Applied Computing, 2002

19. B. Segall, D. Arnold, J. Boot, M. Henderson and T. Phelps, “Content Based Routing with
Elvin4,” In Proceedings of AUUG2K, 2000

20. Sun Microsystems, Inc. “Java2 Platform, Micro Edition(J2ME),” http://java.sun.com/j2me/

http://java.sun.com/j2me/

